Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Platform trials are multi‐arm designs that simultaneously evaluate multiple treatments for a single disease within the same overall trial structure. Unlike traditional randomized controlled trials, they allow treatment arms to enter and exit the trial at distinct times while maintaining a control arm throughout. This control arm comprises both concurrent controls, where participants are randomized concurrently to either the treatment or control arm, and non‐concurrent controls, who enter the trial when the treatment arm under study is unavailable. While flexible, platform trials introduce the challenge of using non‐concurrent controls, raising questions about estimating treatment effects. Specifically, which estimands should be targeted? Under what assumptions can these estimands be identified and estimated? Are there any efficiency gains? In this article, we discuss issues related to the identification and estimation assumptions of common choices of estimand. We conclude that the most robust strategy to increase efficiency without imposing unwarranted assumptions is to target the concurrent average treatment effect (cATE), the ATE among only concurrent units, using a covariate‐adjusted doubly robust estimator. Our studies suggest that, for the purpose of obtaining efficiency gains, collecting important prognostic variables is more important than relying on non‐concurrent controls. We also discuss the perils of targeting ATE due to an untestable extrapolation assumption that will often be invalid. We provide simulations illustrating our points and an application to the ACTT platform trial, resulting in a 20% improvement in precision compared to the naive estimator that ignores non‐concurrent controls and prognostic variables.more » « lessFree, publicly-accessible full text available March 15, 2026
-
For many rare diseases with no approved preventive interventions, promising interventions exist. However, it has proven difficult to conduct a pivotal phase 3 trial that could provide direct evidence demonstrating a beneficial effect of the intervention on the target disease outcome. When a promising putative surrogate endpoint(s) for the target outcome is available, surrogate-based provisional approval of an intervention may be pursued. Following the general Causal Roadmap rubric, we describe a surrogate endpoint-based provisional approval causal roadmap. Based on an observational study data set and a phase 3 randomized trial data set, this roadmap defines an approach to analyze the combined data set to draw a conservative inference about the treatment effect (TE) on the target outcome in the phase 3 study population. The observational study enrolls untreated individuals and collects baseline covariates, surrogate endpoints, and the target outcome, and is used to estimate the surrogate index—the regression of the target outcome on the surrogate endpoints and baseline covariates. The phase 3 trial randomizes participants to treated vs. untreated and collects the same data but is much smaller and hence very underpowered to directly assess TE, such that inference on TE is based on the surrogate index. This inference is made conservative by specifying 2 bias functions: one that expresses an imperfection of the surrogate index as a surrogate endpoint in the phase 3 study, and the other that expresses imperfect transport of the surrogate index in the untreated from the observational to the phase 3 study. Plug-in and nonparametric efficient one-step estimators of TE, with inferential procedures, are developed. The finite-sample performance of the estimators is evaluated in simulation studies. The causal roadmap is motivated by and illustrated with contemporary Group B Streptococcus vaccine development.more » « less
-
Summary Causal mediation analysis has historically been limited in two important ways: (i) a focus has traditionally been placed on binary exposures and static interventions and (ii) direct and indirect effect decompositions have been pursued that are only identifiable in the absence of intermediate confounders affected by exposure. We present a theoretical study of an (in)direct effect decomposition of the population intervention effect, defined by stochastic interventions jointly applied to the exposure and mediators. In contrast to existing proposals, our causal effects can be evaluated regardless of whether an exposure is categorical or continuous and remain well-defined even in the presence of intermediate confounders affected by exposure. Our (in)direct effects are identifiable without a restrictive assumption on cross-world counterfactual independencies, allowing for substantive conclusions drawn from them to be validated in randomized controlled trials. Beyond the novel effects introduced, we provide a careful study of nonparametric efficiency theory relevant for the construction of flexible, multiply robust estimators of our (in)direct effects, while avoiding undue restrictions induced by assuming parametric models of nuisance parameter functionals. To complement our nonparametric estimation strategy, we introduce inferential techniques for constructing confidence intervals and hypothesis tests, and discuss open-source software, the $$\texttt{medshift}$$ $$\texttt{R}$$ package, implementing the proposed methodology. Application of our (in)direct effects and their nonparametric estimators is illustrated using data from a comparative effectiveness trial examining the direct and indirect effects of pharmacological therapeutics on relapse to opioid use disorder.more » « less
An official website of the United States government
